cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202811 Number of nX7 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.

This page as a plain text file.
%I A202811 #7 Jun 02 2025 07:28:50
%S A202811 1,28,1925,185051,17870566,1420586923,83834499040,3569257400553,
%T A202811 111459151645204,2641129540510016,49234329818852639,
%U A202811 745835721746043801,9437806620755614177,102070059376685237588,961550132935851976722
%N A202811 Number of nX7 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.
%C A202811 Column 7 of A202812
%H A202811 R. H. Hardin, <a href="/A202811/b202811.txt">Table of n, a(n) for n = 1..210</a>
%F A202811 Empirical: a(n) = (505049821571377/2310865325251447201551221391849525608448000000000)*n^42 + (505049821571377/10003745996759511695026932432249028608000000000)*n^41 + (697157521013072269/122387292487184660151841690439417384140800000000)*n^40 + (4225542901791488911/10198941040598721679320140869951448678400000000)*n^39 + (511015022813422599037/23536017785997050029200325084503343104000000000)*n^38 + (4273509720759627379/4915626104009408945112849850564608000000000)*n^37 + (89031566214894674989/3232493736243279544894340032207257600000000)*n^36 + (730504744107719389/1035231892736274260115026293555200000000)*n^35 + (248086127009893503581713/16739699705545554786059975166787584000000000)*n^34 + (2482455352042995450827/9653806058561450280311404363776000000000)*n^33 + (1456419904033856852149679/393875287189307171436705298042060800000000)*n^32 + (1325715508198579039/30110330990505299065543065600000000)*n^31 + (416622866734588556399296799/963512127264165392493015648436224000000000)*n^30 + (1052394587051030319435197/301852170195540536495305654272000000000)*n^29 + (8795598677269564384816283/379709212714942026598232767856640000000)*n^28 + (15329972564886606760489/116332479385705277756811509760000000)*n^27 + (895628580964583863936016227/1241357041568079702340376356454400000000)*n^26 + (48678001709692534354529/11125962746973548280859852800000000)*n^25 + (581626049952438163656607155611/20854798298343738999318322788433920000000)*n^24 + (38563493252926457063285272987/248271408313615940468075271290880000000)*n^23 + (21484352351603722106031974752901/30764065812774149144957153181696000000000)*n^22 + (684171961149757475852927444833/233061104642228402613311766528000000000)*n^21 + (4222697192437578733723977107198779/283029405477522172133605809271603200000000)*n^20 + (689911123340090662257210017/9204646539188798196233011200000000)*n^19 + (408227466066257629009423821811718437/1694452361740428793694613726560256000000000)*n^18 + (453255628871104700565709252939459/1186591289734193833119477399552000000000)*n^17 + (730460424832468133438585412018191/355977386920258149935843219865600000000)*n^16 + (7494941073955233684715626306593/337099798219941429863487897600000000)*n^15 + (89975313122389958803306362312702263/992629251989181379628793593856000000000)*n^14 + (6368274361663651815586495464767/145889072896705082249969664000000000)*n^13 - (1226004201038261258632936486923362159/2393339418685026215327202331852800000000)*n^12 + (372065661429794836176096265003/445509834204686220774604800000000)*n^11 + (2379028276120387850136163467829732067/269092394957972524210069045248000000000)*n^10 + (286726784528221451647226875514471191/22424366246497710350839087104000000000)*n^9 - (4671555612867846794127782927983/309301603399968418632263270400000)*n^8 + (62894475039471684088010661043/11408407736313446454435840000000)*n^7 + (133049653188380852729436298770471293/5243252857774846579949667102720000000)*n^6 + (12542813288577787536504887822663/126100357329842390090179584000000)*n^5 + (20897339896148563497765300816541/37649963831338656469782190080000)*n^4 + (1581363911193207268214251/4971316050742945936032000)*n^3 - (9125967420123876763635563/8499263727260861466912000)*n^2 + (6926088125953253/109530094869795600)*n + 1
%e A202811 Some solutions for n=3
%e A202811 ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
%e A202811 ..0..0..1..2..2..2..2....0..1..1..1..1..1..1....0..0..0..1..1..1..1
%e A202811 ..0..2..2..2..2..3..3....0..1..1..1..1..1..2....0..0..1..2..3..3..3
%K A202811 nonn
%O A202811 1,2
%A A202811 _R. H. Hardin_ Dec 24 2011