A202838 Triangle read by rows: T(n,k) is the number of secondary structures of size n (n>=0) having k stacks of length 1 (k>=0).
1, 1, 1, 1, 1, 1, 3, 2, 6, 4, 10, 3, 8, 15, 14, 14, 27, 40, 1, 23, 56, 90, 16, 38, 122, 178, 85, 65, 253, 356, 295, 9, 117, 494, 762, 805, 105, 214, 938, 1713, 1912, 594, 2, 391, 1783, 3828, 4326, 2331, 76, 708, 3456, 8265, 9882, 7290, 771, 1278, 6793, 17309, 23109, 19784, 4529, 30
Offset: 0
Examples
Row 5 is 2,6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively. Triangle starts: 1; 1; 1; 1,1; 1,3; 2,6; 4,10,3; 8,15,14;
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
Programs
-
Maple
f := (t-1)*z^2+z^2/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
Formula
G.f. G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (t-1)z^2 + z^2/(1-z^2).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + (f/(1 + f))H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .
Comments