A202840 Number of secondary structures of size n having no stacks of length 1.
1, 1, 1, 1, 1, 2, 4, 8, 14, 23, 38, 65, 117, 214, 391, 708, 1278, 2318, 4238, 7803, 14419, 26684, 49433, 91736, 170656, 318280, 594905, 1113868, 2088554, 3921505, 7373367, 13883045, 26174600, 49408932, 93372078, 176637791, 334491586, 634023965, 1202894908, 2284187117
Offset: 0
Keywords
Examples
a(5)=2; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
Programs
-
Maple
f := z^4/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 42)): seq(coeff(Gser, z, n), n = 0 .. 39);
Formula
G.f. G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^4/(1-z^2).
D-finite with recurrence +(n+4)*a(n) +(-2*n-5)*a(n-1) +(-n-1)*a(n-2) +2*(2*n-1)*a(n-3) +(-n+2)*a(n-4) +4*(-2*n+7)*a(n-5) +3*(n-5)*a(n-6) +3*(2*n-13)*a(n-7) +2*(-n+8)*a(n-8) +2*(-2*n+19)*a(n-9) +(n-11)*a(n-10)=0. - R. J. Mathar, Jul 26 2022
Comments