cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202846 Number of stacks of odd length in all 2ndary structures of size n.

This page as a plain text file.
%I A202846 #14 Jul 26 2022 13:11:21
%S A202846 0,0,0,1,3,6,16,44,113,290,749,1930,4966,12776,32870,84577,217665,
%T A202846 560328,1442893,3716837,9577805,24689612,63667585,164239124,423824628,
%U A202846 1094065998,2825169786,7297681867,18856458451,48737762624,126007604078,325873570924,842982118807
%N A202846 Number of stacks of odd length in all 2ndary structures of size n.
%C A202846 For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
%C A202846 Number of stacks of even length in all 2ndary structures of size n+2.
%H A202846 I. L. Hofacker, P. Schuster and P. F. Stadler, <a href="https://doi.org/10.1016/S0166-218X(98)00073-0">Combinatorics of RNA secondary structures</a>, Discrete Appl. Math., 88, 1998, 207-237.
%H A202846 P. R. Stein and M. S. Waterman, <a href="https://doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1979), 261-272.
%F A202846 a(n) = Sum(k*A202845(n,k), k>=0).
%F A202846 a(n) = Sum(k*A202848(n+2,k), k>=0).
%F A202846 a(n)+a(n-2) = A171854(n) (n>=2).
%F A202846 G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/[(1+z^2)(1 - z + z^2 -2*z^2*S)], where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
%F A202846 Conjecture D-finite with recurrence +(n+2)*(13230*n^2-96611*n+147133)*a(n) +(-44206*n^3+292903*n^2-261197*n-341332)*a(n-1) +2*(17746*n^3-141629*n^2+231187*n+123600)*a(n-2) +2*(-26460*n^3+157889*n^2-64195*n-381418)*a(n-3) +2*(35492*n^3-320849*n^2+745453*n-240088)*a(n-4) +2*(-13230*n^3+98869*n^2-160610*n-79637)*a(n-5) +(48722*n^3-428591*n^2+982443*n-433110)*a(n-6) -(n-6)*(17746*n^2-68387*n+43705)*a(n-7)=0. - _R. J. Mathar_, Jul 26 2022
%e A202846 a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of odd length, respectively.
%p A202846 g := z^2*(1-z^2)*S*(S-1)/((1+z^2)*(1-z+z^2-2*z^2*S)): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
%Y A202846 Cf. A004148, A171854, A202845, A023427, A202848, A202849
%K A202846 nonn
%O A202846 0,5
%A A202846 _Emeric Deutsch_, Dec 26 2011