A202849 Number of secondary structures of size n having no stacks of even length.
1, 1, 1, 2, 4, 7, 14, 31, 66, 141, 313, 702, 1577, 3581, 8207, 18903, 43770, 101903, 238282, 559322, 1317717, 3114676, 7383914, 17552857, 41831618, 99923471, 239200459, 573750288, 1378763083, 3319005743, 8002573350, 19324601494, 46731582653, 113160019865
Offset: 0
Keywords
Examples
a(5)=7; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; only the last one has stacks of even length.
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
Programs
-
Maple
f := z^2/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 37)): seq(coeff(Gser, z, n), n = 0 .. 33);
Formula
G.f.: G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^2/(1-z^4).
a(n) = A202848(n,0).
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(n-1)*a(n-2) +3*(-2*n+5)*a(n-3) +(-n+7)*a(n-6) +3*(2*n-17)*a(n-7) +(-n+10)*a(n-8) +(-2*n+23)*a(n-9) +(n-13)*a(n-10)=0. - R. J. Mathar, Jul 26 2022
Comments