cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202849 Number of secondary structures of size n having no stacks of even length.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 31, 66, 141, 313, 702, 1577, 3581, 8207, 18903, 43770, 101903, 238282, 559322, 1317717, 3114676, 7383914, 17552857, 41831618, 99923471, 239200459, 573750288, 1378763083, 3319005743, 8002573350, 19324601494, 46731582653, 113160019865
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.

Examples

			a(5)=7; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; only the last one has stacks of even length.
		

Crossrefs

Programs

  • Maple
    f := z^2/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 37)): seq(coeff(Gser, z, n), n = 0 .. 33);

Formula

G.f.: G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^2/(1-z^4).
a(n) = A202848(n,0).
D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(n-1)*a(n-2) +3*(-2*n+5)*a(n-3) +(-n+7)*a(n-6) +3*(2*n-17)*a(n-7) +(-n+10)*a(n-8) +(-2*n+23)*a(n-9) +(n-13)*a(n-10)=0. - R. J. Mathar, Jul 26 2022