cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202853 Triangle read by rows: T(n,k) is the number of k-matchings of the rooted tree having Matula-Goebel number n (n>=1, k>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 4, 3, 1, 4, 3, 1, 4, 3, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 5, 6, 1, 1, 4, 1, 4, 2, 1, 5, 5, 1, 1, 4, 1, 5, 5, 1, 5, 5, 1, 5, 6, 1, 1, 5, 5, 1, 1, 5, 3, 1, 6, 10, 4, 1, 5, 5, 1, 1, 6, 9, 4, 1, 5, 4, 1, 5, 5, 1, 6, 9, 3, 1, 5, 6, 1, 1, 5, 1, 6, 10, 4, 1, 5, 5, 1, 6, 9, 2
Offset: 1

Views

Author

Emeric Deutsch, Feb 14 2012

Keywords

Comments

The entries in row n are the coefficients of the matching-generating polynomial of the rooted tree having Matula-Goebel number n (see the MathWorld link).
A k-matching in a graph is a set of k edges, no two of which have a vertex in common.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
After activating the Maple program, the command m(n) will yield the matching-generating polynomial of the rooted tree corresponding to the Matula-Goebel number n.

Examples

			T(11,2)=3 because the rooted tree corresponding to n=11 is a path abcde on 5 vertices. We have three 2-matchings:  (ab,cd), (ab,de), and (bc,de).
Triangle starts:
  1;
  1,1;
  1,2;
  1,2;
  1,3,1;
  1,3,1;
  ...
		

References

  • C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

Crossrefs

Cf. A206483 (matching number), A193404 (row sums), A347967 (end-most each row), A193403.
Cf. A202854 (palindromic rows).

Programs

  • Maple
    with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: for n to 35 do seq(coeff(m(n), x, j), j = 0 .. degree(m(n))) end do; # yields sequence in triangular form
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
    M[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], M[PrimePi[n]][[1]] + M[PrimePi[n]][[2]]}, True, {M[r[n]][[1]]* M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];
    m[n_] := Total[M[n]];
    T[n_] := CoefficientList[m[n], x];
    Table[T[n], {n, 1, 35}] // Flatten (* Jean-François Alcover, Jun 24 2024, after Maple code *)

Formula

Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching (a k-matching has size k). We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)c(s)+c(r)b(s), c(r)c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called the matching-generating polynomial). T(n,k) is the coefficient of x^k in the polynomial m(n). [The actual matching polynomial is obtained by the substitution x = -1/x^2, followed by multiplication by x^N(n), where N(n) is the number of vertices of the rooted tree.]