cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202854 The Matula-Göbel numbers of rooted trees T for which the sequence formed by the number of k-matchings of T (k=0,1,2,...) is palindromic.

Original entry on oeis.org

1, 2, 5, 6, 18, 23, 26, 41, 54, 78, 103, 122, 162, 167, 202, 234, 283, 338, 366, 419, 486, 502, 547, 606, 643, 702, 794, 1009, 1014, 1093, 1098, 1346, 1458, 1506, 1543, 1586, 1597, 1818, 1906, 1999, 2106, 2371, 2382, 2462, 2626, 2719, 2962
Offset: 1

Views

Author

Emeric Deutsch, Feb 14 2012

Keywords

Comments

Alternatively, the Matula-Göbel numbers of rooted trees for which the matching-generating polynomial is palindromic.
A k-matching in a graph is a set of k edges, no two of which have a vertex in common.
The Matula-Göbel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Göbel numbers of the m branches of T.
After activating the Maple program, the command m(n) will yield the matching-generating polynomial of the rooted tree having Matula-Göbel number n.
The given Maple program gives the required Matula-Göbel numbers up to L=200 (adjustable).

Examples

			5 is in the sequence because the corresponding rooted tree is a path abcd on 4 vertices. We have 1 0-matching (the empty set), 3 1-matchings (ab), (bc), (cd), and 1 2-matchings (ab, cd). The sequence 1,3,1 is palindromic.
		

References

  • C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

Crossrefs

Cf. A202853.

Programs

  • Maple
    L := 200: with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: PAL := {}: for n to L do if m(n) = numer(subs(x = 1/x, m(n))) then PAL := `union`(PAL, {n}) else  end if end do: PAL;
  • Mathematica
    L = 3000;
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
    M[n_] := M[n] = Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], M[PrimePi[n]][[1]] + M[PrimePi[n]][[2]]}, True, {M[r[n]][[1]]* M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];
    m[n_] := Total[M[n]] // Expand;
    PAL = {};
    Do[If [m[n] == Numerator[Together[m[n] /. x -> 1/x]], PAL = Union[PAL, {n}]], {n, 1, L}];
    PAL (* Jean-François Alcover, Jun 24 2024, after Maple code *)

Formula

Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Göbel number n that contain (do not contain) the root, with respect to the size of the matching. We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)*c(s)+c(r)*b(s), c(r)*c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called matching-generating polynomial). [The actual matching polynomial is obtained by the substitution x = -1/x^2, followed by multiplication by x^N(n), where N(n) is the number of vertices of the rooted tree.]