cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202869 Symmetric matrix based on the lower Wythoff sequence, A000201, by antidiagonals.

This page as a plain text file.
%I A202869 #9 Oct 24 2024 05:40:24
%S A202869 1,3,3,4,10,4,6,15,15,6,8,22,26,22,8,9,30,39,39,30,9,11,35,54,62,54,
%T A202869 35,11,12,42,66,87,87,66,42,12,14,47,79,108,126,108,79,47,14,16,54,90,
%U A202869 132,159,159,132,90,54,16,17,62,103,151,196,207,196,151,103,62
%N A202869 Symmetric matrix based on the lower Wythoff sequence, A000201, by antidiagonals.
%C A202869 Let s=(1,3,4,6,8,...)=A000201 and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202869 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202870 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
%e A202869 Northwest corner:
%e A202869 1...3....4....6....8....9
%e A202869 3...10...15...22...30...35
%e A202869 4...15...26...39...54...66
%e A202869 6...22...39...62...87...108
%e A202869 8...30...54...87...126..159
%t A202869 s[k_] := Floor[k*GoldenRatio];
%t A202869 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
%t A202869 L = Transpose[U]; M = L.U; TableForm[M]
%t A202869 m[i_, j_] := M[[i]][[j]];
%t A202869 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
%t A202869 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
%t A202869 Table[f[n], {n, 1, 12}]
%t A202869 Table[Sqrt[f[n]], {n, 1, 12}]   (* A054347 *)
%t A202869 Table[m[1, j], {j, 1, 12}]        (* A000201 *)
%Y A202869 Cf. A202870.
%K A202869 nonn,tabl
%O A202869 1,2
%A A202869 _Clark Kimberling_, Dec 26 2011