cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202871 Symmetric matrix based on the Lucas sequence, A000032, by antidiagonals.

This page as a plain text file.
%I A202871 #9 Oct 24 2024 05:40:28
%S A202871 1,3,3,4,10,4,7,15,15,7,11,25,26,25,11,18,40,43,43,40,18,29,65,69,75,
%T A202871 69,65,29,47,105,112,120,120,112,105,47,76,170,181,195,196,195,181,
%U A202871 170,76,123,275,293,315,318,318,315,293,275,123,199,445,474,510,514
%N A202871 Symmetric matrix based on the Lucas sequence, A000032, by antidiagonals.
%C A202871 Let s=(1,3,4,7,11,...)=A000201 and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202871 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202872 for characteristic polynomials of principal submatrices of M, with interlacing zeros.
%e A202871 Northwest corner:
%e A202871 1....3....4....7....11...18
%e A202871 3....10...15...25...40...65
%e A202871 4....15...26...43...69...112
%e A202871 7....25...43...75...120..195
%e A202871 11...40...69...120..196..318
%t A202871 s[k_] := LucasL[k];
%t A202871 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
%t A202871 L = Transpose[U]; M = L.U; TableForm[M]
%t A202871 m[i_, j_] := M[[i]][[j]];
%t A202871 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
%t A202871 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
%t A202871 Table[f[n], {n, 1, 12}]
%t A202871 Table[Sqrt[f[n]], {n, 1, 12}] (* A027961 *)
%t A202871 Table[m[1, j], {j, 1, 12}]    (* A000032 *)
%Y A202871 Cf. A202872.
%K A202871 nonn,tabl
%O A202871 1,2
%A A202871 _Clark Kimberling_, Dec 26 2011