A202873 Symmetric matrix based on (1,3,7,15,31,...), by antidiagonals.
1, 3, 3, 7, 10, 7, 15, 24, 24, 15, 31, 52, 59, 52, 31, 63, 108, 129, 129, 108, 63, 127, 220, 269, 284, 269, 220, 127, 255, 444, 549, 594, 594, 549, 444, 255, 511, 892, 1109, 1214, 1245, 1214, 1109, 892, 511, 1023, 1788, 2229, 2454, 2547, 2547, 2454
Offset: 1
Examples
Northwest corner: 1.....3.....7...15...31.....63 3....10....24...52...108...220 7....24....59..129...269...549 15...52...129..284...594..1214 31...108..269..594..1245..2547
Crossrefs
Cf. A202767.
Programs
-
Mathematica
s[k_] := -1 + 2^k; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A000295, Eulerian *) Table[m[1, j], {j, 1, 12}] (* A000225 *) Table[m[2, j], {j, 1, 12}] (* A053208 *)
Comments