This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202874 #6 Jul 12 2012 00:39:53 %S A202874 1,2,2,3,5,3,5,8,8,5,8,13,14,13,8,13,21,23,23,21,13,21,34,37,39,37,34, %T A202874 21,34,55,60,63,63,60,55,34,55,89,97,102,103,102,97,89,55,89,144,157, %U A202874 165,167,167,165,157,144,89,144,233,254,267,270,272,270,267,254 %N A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals. %C A202874 Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A202874 Northwest corner: %e A202874 1....2....3....5....8....13 %e A202874 2....5....8....13...21...34 %e A202874 3....8....14...23...37...60 %e A202874 5....13...23...39...63...102 %e A202874 8....21...37...63...102..167 %t A202874 s[k_] := Fibonacci[k + 1]; %t A202874 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; %t A202874 L = Transpose[U]; M = L.U; TableForm[M] %t A202874 m[i_, j_] := M[[i]][[j]]; %t A202874 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %t A202874 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] %t A202874 Table[f[n], {n, 1, 12}] %t A202874 Table[Sqrt[f[n]], {n, 1, 12}] (* A001911 *) %t A202874 Table[m[1, j], {j, 1, 12}] (* A000045 *) %t A202874 Table[m[j, j], {j, 1, 12}] (* A119996 *) %t A202874 Table[m[j, j + 1], {j, 1, 12}] (* A180664 *) %t A202874 Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A002940 *) %Y A202874 Cf. A202875. %K A202874 nonn,tabl %O A202874 1,2 %A A202874 _Clark Kimberling_, Dec 26 2011