cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202875 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202874; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -6, 1, 1, -12, 20, -1, 1, -19, 69, -59, 1, 1, -27, 159, -303, 162, -1, 1, -36, 302, -943, 1149, -434, 1, 1, -46, 511, -2284, 4599, -3991, 1147, -1, 1, -57, 800, -4743, 13733, -19785, 13090, -3016, 1, 1, -69, 1184, -8867, 34141, -70945
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-6....1
1...-12...20...-1
1...-19...69...-59...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k + 1]
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]