A202875 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202874; by antidiagonals.
1, -1, 1, -6, 1, 1, -12, 20, -1, 1, -19, 69, -59, 1, 1, -27, 159, -303, 162, -1, 1, -36, 302, -943, 1149, -434, 1, 1, -46, 511, -2284, 4599, -3991, 1147, -1, 1, -57, 800, -4743, 13733, -19785, 13090, -3016, 1, 1, -69, 1184, -8867, 34141, -70945
Offset: 1
Examples
Top of the array: 1...-1 1...-6....1 1...-12...20...-1 1...-19...69...-59...1
Links
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
Programs
-
Mathematica
f[k_] := Fibonacci[k + 1] U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; F[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[F[n], x] TableForm[Flatten[Table[F[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] TableForm[Table[c[n], {n, 1, 10}]]
Comments