This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202876 #6 Jul 12 2012 00:39:53 %S A202876 1,2,2,4,5,4,7,10,10,7,12,18,21,18,12,20,31,38,38,31,20,33,52,66,70, %T A202876 66,52,33,54,86,111,122,122,111,86,54,88,141,184,206,214,206,184,141, %U A202876 88,143,230,302,342,362,362,342,302,230,143,232,374,493,562,602 %N A202876 Symmetric matrix based on A000071, by antidiagonals. %C A202876 Let s=A000071 (Fibonacci numbers -1), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202876 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202877 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A202876 Northwest corner: %e A202876 1....2....4....7....12....20 %e A202876 2....5....10...18...31....52 %e A202876 4....10...21...38...66....111 %e A202876 7....18...38...70...122...206 %e A202876 12...31...66...122..214...362 %t A202876 s[k_] := -1 + Fibonacci[k + 2]; %t A202876 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; %t A202876 L = Transpose[U]; M = L.U; TableForm[M] %t A202876 m[i_, j_] := M[[i]][[j]]; %t A202876 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %t A202876 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] %t A202876 Table[f[n], {n, 1, 12}] %t A202876 Table[Sqrt[f[n]], {n, 1, 12}] (* A001924 *) %t A202876 Table[m[1, j], {j, 1, 12}] (* A000071 *) %t A202876 Table[m[j, j], {j, 1, 12}] (* A202462 *) %Y A202876 Cf. A202877, A202876. %K A202876 nonn,tabl %O A202876 1,2 %A A202876 _Clark Kimberling_, Dec 26 2011