This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202946 #13 Feb 16 2025 08:33:16 %S A202946 3,18,1080,181440,59875200,32691859200,26676557107200, %T A202946 30411275102208000,46164315605151744000,90020415430045900800000, %U A202946 219289731987591814348800000,652606242395073239502028800000 %N A202946 a(n+1) = 6*A060544(n)*a(n). %C A202946 Sums of coefficients from (3n+1)th moments of binomial(m,k)*binomial(2m,k): see Maple code below. %H A202946 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/BinomialSums.html">MathWorld: Binomial Sums</a> %H A202946 <a href="/index/Di#divseq">Index to divisibility sequences</a> %F A202946 a(n) = (1/18)*27^n*Gamma(n-1/3)*Gamma(n-2/3)*sqrt(3)/Pi. %e A202946 The evaluation of sum(k=0..n, k^7*binomial(n,k)*binomial(2*n,k)) involves the polynomial 32*n^7+96*n^6-336*n^5-360*n^4+1020*n^3-42*n^2-455*n+63, the sum of the coefficients of which is 18 = a(2). %p A202946 with(PolynomialTools); polyn := proc (q) options operator, arrow; 3^q*Pi*GAMMA(2*n)*(sum(k^q*binomial(n, k)*binomial(2*n, k), k = 0 .. n))/(27^n*sqrt(3)*GAMMA(n-floor((1/3)*q+1/3)+2/3)*GAMMA(n-floor((1/3)*q)+1/3)) end proc; coefl := proc (q) options operator, arrow; CoefficientList(expand(polyn(q)), n) end proc; coe := proc (j, h) options operator, arrow; coefl(j)[h] end proc; seq(sum(coe(3*r+1, k), k = 1 .. 5*r+1), r = 1 .. 8) ; %o A202946 (PARI) print1(a=3);for(n=2,10,print1(", ",a*=27*n*(n-3)+60)) \\ _Charles R Greathouse IV_, Dec 26 2011 %Y A202946 Cf. A060544, A064350. %K A202946 nonn,easy %O A202946 1,1 %A A202946 _John M. Campbell_, Dec 26 2011