A202963 Number of arrays of 3 integers in -n..n with sum zero and adjacent elements differing in absolute value.
2, 6, 20, 36, 62, 90, 128, 168, 218, 270, 332, 396, 470, 546, 632, 720, 818, 918, 1028, 1140, 1262, 1386, 1520, 1656, 1802, 1950, 2108, 2268, 2438, 2610, 2792, 2976, 3170, 3366, 3572, 3780, 3998, 4218, 4448, 4680, 4922, 5166, 5420, 5676, 5942, 6210, 6488
Offset: 1
Keywords
Examples
Some solutions for n=5 .-2....1....3...-4...-2...-4....5...-1...-1....2....2....2...-2....2....1....4 .-3....0....1....1...-1....3...-1....5....2...-4....0....1....3....3...-2...-1 ..5...-1...-4....3....3....1...-4...-4...-1....2...-2...-3...-1...-5....1...-3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 1 of A202962.
Formula
Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
Empirical g.f.: x*(2+2*x+8*x^2)/(1-2*x+2*x^3-x^4). - Colin Barker, Jan 04 2012