A202965 Number of arrays of 5 integers in -n..n with sum zero and adjacent elements differing in absolute value.
2, 82, 414, 1562, 4048, 9010, 17296, 30648, 50232, 78388, 116614, 167824, 233858, 318234, 423094, 552554, 709104, 897434, 1120360, 1383176, 1689016, 2043772, 2450910, 2916896, 3445538, 4043906, 4716110, 5469818, 6309488, 7243362, 8276224
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0....5....5....5...-5....2...-4...-1...-3....3....2...-2...-5....0...-1...-2 .-2....0....2...-2...-2....0....3...-5...-5...-4...-1....5....0...-4....2....5 ..0...-1...-5...-4....4...-4....4...-1....1...-3...-3...-4....2....5....1...-1 ..2....0...-2....1....2...-2...-2....2....4....4....0...-1....4....4....3....0 ..0...-4....0....0....1....4...-1....5....3....0....2....2...-1...-5...-5...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A202962.
Formula
Empirical: a(n) = 2*a(n-1) -a(n-3) -2*a(n-5) +2*a(n-6) +a(n-8) -2*a(n-10) +a(n-11).
Empirical g.f.: 2*x*(1 + 39*x + 125*x^2 + 368*x^3 + 503*x^4 + 666*x^5 + 499*x^6 + 384*x^7 + 120*x^8 + 55*x^9) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Jun 03 2018
Comments