A202968 Number of arrays of 8 integers in -n..n with sum zero and adjacent elements differing in absolute value.
12, 1724, 47732, 447528, 2475008, 9824176, 31155004, 84017312, 200493156, 434793200, 873257136, 1646890444, 2946873064, 5043331924, 8307662160, 13238602092, 20492707704, 30919086656, 45598979576, 65890555856, 93479027928
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2....1....3....2....2....3....2....2....0....0....1...-1....0....1....1...-1 .-3....3....0....1...-3....0....1....3....2....2....0....0...-2....0....0....0 .-1...-2...-1....3....2...-1...-3....1...-3...-1....2....3....3....2....3....2 ..0...-3....0...-2...-1...-2....0...-2....1....2....0....2....0...-3...-2....1 ..2....1...-3....1....2....3....2...-1....3....0...-2...-3...-3....0....0...-3 .-1...-2....0...-3...-3....0....0....0...-2...-2...-3....0....1...-3...-3....0 .-2....3....3....0....1...-1...-3...-2....0...-3...-1...-3....0....0...-2...-1 ..3...-1...-2...-2....0...-2....1...-1...-1....2....3....2....1....3....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -4*a(n-6) -4*a(n-7) -3*a(n-8) +a(n-9) +5*a(n-10) +6*a(n-11) +5*a(n-12) -2*a(n-14) -5*a(n-15) -4*a(n-16) -5*a(n-17) -2*a(n-18) +5*a(n-20) +6*a(n-21) +5*a(n-22) +a(n-23) -3*a(n-24) -4*a(n-25) -4*a(n-26) -a(n-27) +a(n-28) +3*a(n-29) +a(n-30) -a(n-32)
Comments