This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202970 #10 Oct 24 2024 05:40:36 %S A202970 1,3,3,6,10,6,11,21,21,11,19,39,46,39,19,32,68,87,87,68,32,53,115,153, %T A202970 167,153,115,53,87,191,260,296,296,260,191,87,142,314,433,505,528,505, %U A202970 433,314,142,231,513,713,843,904,904,843,713,513,231,375,835 %N A202970 Symmetric matrix based on A001911, by antidiagonals. %C A202970 Let s=A001911 (F(n+3)-2, where F(n)=A000045(n), the Fibonacci numbers), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202970 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202971 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A202970 Northwest corner: %e A202970 1...3...6....11...19 %e A202970 3...10..21...39...68 %e A202970 6...21..46...87...153 %e A202970 11..39..87...167..296 %e A202970 19..68..153..296..528 %t A202970 s[k_] := -2 + Fibonacci[k + 3]; %t A202970 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; %t A202970 L = Transpose[U]; M = L.U; TableForm[M] %t A202970 m[i_, j_] := M[[i]][[j]]; %t A202970 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %t A202970 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] %t A202970 Table[f[n], {n, 1, 12}] %t A202970 Table[Sqrt[f[n]], {n, 1, 12}] (* A001891 *) %t A202970 Table[m[1, j], {j, 1, 12}] (* A001911 *) %t A202970 Table[m[j, j], {j, 1, 12}] %t A202970 Table[m[j, j + 1], {j, 1, 12}] %t A202970 Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A001925 *) %Y A202970 Cf. A202971, A202453, A202876. %K A202970 nonn,tabl %O A202970 1,2 %A A202970 _Clark Kimberling_, Dec 27 2011