cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202971 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A202970; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -11, 1, 1, -30, 57, -1, 1, -53, 338, -224, 1, 1, -80, 992, -2600, 752, -1, 1, -111, 2171, -11803, 15614, -2304, 1, 1, -146, 4039, -35908, 105335, -79786, 6665, -1, 1, -185, 6776, -87154, 434244, -770624, 362449, -18595
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-11...1
1...-30...57....-1
1...-53...338...-224...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := -2 + Fibonacci[k + 3]
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]