This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203002 #10 Oct 02 2017 09:58:52 %S A203002 1,-1,1,-3,1,1,-14,21,-1,1,-29,162,-120,1,1,-48,540,-1736,844,-1,1, %T A203002 -71,1267,-8091,17022,-5664,1,1,-98,2475,-24908,105503,-158690,39045, %U A203002 -1,1,-129,4312,-60994,408508,-1250056,1416673 %N A203002 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A203001; by antidiagonals. %C A203002 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). %H A203002 S.-G. Hwang, <a href="http://matrix.skku.ac.kr/Series-E/Monthly-E.pdf">Cauchy's interlace theorem for eigenvalues of Hermitian matrices</a>, American Mathematical Monthly 111 (2004) 157-159. %H A203002 A. Mercer and P. Mercer, <a href="http://dx.doi.org/10.1155/S016117120000257X">Cauchy's interlace theorem and lower bounds for the spectral radius</a>, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566. %e A203002 Top of the array: %e A203002 1...-1 %e A203002 1...-3....1 %e A203002 1...-14...21....-1 %e A203002 1...-29...162...-120...1 %t A203002 f[k_] := Fibonacci[k]^2; %t A203002 U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; %t A203002 L[n_] := Transpose[U[n]]; %t A203002 F[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A203002 c[n_] := CoefficientList[F[n], x] %t A203002 TableForm[Flatten[Table[F[n], {n, 1, 10}]]] %t A203002 Table[c[n], {n, 1, 12}] %t A203002 Flatten[%] %t A203002 TableForm[Table[c[n], {n, 1, 10}]] %Y A203002 Cf. A203001, A202605. %K A203002 tabl,sign %O A203002 1,4 %A A203002 _Clark Kimberling_, Dec 27 2011