A203003 Symmetric matrix based on A007598(n+1), by antidiagonals.
1, 4, 4, 9, 17, 9, 25, 40, 40, 25, 64, 109, 98, 109, 64, 169, 281, 265, 265, 281, 169, 441, 740, 685, 723, 685, 740, 441, 1156, 1933, 1802, 1865, 1865, 1802, 1933, 1156, 3025, 5065, 4709, 4910, 4819, 4910, 4709, 5065, 3025, 7921, 13256, 12337, 12827
Offset: 1
Examples
Northwest corner: 1....4.....9....25....64 4....17....40...109...281 9....40....98...265...685 25...109...265..1865
Programs
-
Mathematica
s[k_] := Fibonacci[k + 1]^2; U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]]; L = Transpose[U]; M = L.U; TableForm[M] m[i_, j_] := M[[i]][[j]]; (* A203003 *) Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]; Table[f[n], {n, 1, 12}] Table[Sqrt[f[n]], {n, 1, 12}] (* A119996 *) Table[m[1, j], {j, 1, 12}] (* A007598(n+1) *)
Comments