cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203004 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A203003; by antidiagonals.

Original entry on oeis.org

1, -1, 1, -18, 1, 1, -84, 116, -1, 1, -439, 1221, -839, 1, 1, -2475, 10435, -13855, 5658, -1, 1, -14312, 81690, -165715, 138669, -39038, 1, 1, -83270, 601411, -1661956, 2164099, -1292751, 266899, -1, 1, -485157
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

Examples

			Top of the array:
1...-1
1...-18....1
1...-84....116....-1
1...-439...1221...-839...1
		

Crossrefs

Programs

  • Mathematica
    f[k_] := Fibonacci[k + 1]^2;
    U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    F[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[F[n], x]
    TableForm[Flatten[Table[F[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]
    TableForm[Table[c[n], {n, 1, 10}]]