A203005 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A115255 (in square format); by antidiagonals.
1, -1, 1, -6, 1, 1, -15, 47, -1, 1, -40, 270, -488, 1, 1, -165, 1738, -5866, 5829, -1, 1, -1074, 15695, -80060, 156495, -74674, 1, 1, -9039, 181581, -1360515, 4552003, -5997165, 997295, -1, 1, -86700, 2566036, -28081556
Offset: 1
Examples
Top of the array: 1...-1 1...-6....1 1...-15...47....-1 1...-40...270...-488...1
Links
- S.-G. Hwang, Cauchy's interlace theorem for eigenvalues of Hermitian matrices, American Mathematical Monthly 111 (2004) 157-159.
- A. Mercer and P. Mercer, Cauchy's interlace theorem and lower bounds for the spectral radius, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.
Programs
-
Mathematica
f[k_] := Binomial[2 k - 2, k - 1]; U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; F[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[F[n], x] TableForm[Flatten[Table[F[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] TableForm[Table[c[n], {n, 1, 10}]]
Comments