This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203007 #7 Oct 01 2016 11:55:22 %S A203007 1,3,11,61,518,6974,149574,5151036,285534660,25535107140, %T A203007 3687959921760,860864908848480,324911938205144160, %U A203007 198334214378751672000,195840008156732278248000,312839537789862069432264000 %N A203007 (n-1)-st elementary symmetric function of Fibonacci numbers F(2) to F(n). %C A203007 From _R. J. Mathar_, Oct 01 2016 (Start): %C A203007 The k-th elementary symmetric functions of F(j), j=2..n+1, form a triangle T(n,k), 0<=k<=n, n>=0: %C A203007 1 %C A203007 1 1 %C A203007 1 3 2 %C A203007 1 6 11 6 %C A203007 1 11 41 61 30 %C A203007 1 19 129 389 518 240 %C A203007 1 32 376 2066 5575 6974 3120 %C A203007 1 53 1048 9962 48961 124049 149574 65520 %C A203007 1 87 2850 45594 387669 1788723 4367240 5151036 2227680 %C A203007 This here is the first subdiagonal. The diagonal is A003266. The 2nd column is A001911, the 3rd A203245. (End) %t A203007 f[k_] := Fibonacci[k + 1]; t[n_] := Table[f[k], {k, 1, n}] %t A203007 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203007 Table[a[n], {n, 1, 16}] (* A203007 *) %Y A203007 Cf. A000045, A203006. %K A203007 nonn %O A203007 1,2 %A A203007 _Clark Kimberling_, Dec 29 2011