This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203010 #7 Oct 01 2016 11:15:08 %S A203010 1,4,19,145,1679,31146,919866,43716030,3345087696,413168662224, %T A203010 82432477483344,26585428576089600,13864587294260493504, %U A203010 11694921751248976025856,15957837208927564640940096,35227081534568618432596098240 %N A203010 (n-1)-st elementary symmetric function of first n Lucas numbers, starting with L(1)=1. %C A203010 From _R. J. Mathar_, Oct 01 2016 (Start): %C A203010 The k-th elementary symmetric functions of the A000204(j), j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0: %C A203010 1 %C A203010 1 1 %C A203010 1 4 3 %C A203010 1 8 19 12 %C A203010 1 15 75 145 84 %C A203010 1 26 240 970 1679 924 %C A203010 1 44 708 5290 19139 31146 16632 %C A203010 1 73 1984 25822 172549 586177 919866 482328 %C A203010 1 120 5415 119070 1386183 8695980 28470185 43716030 22669416 %C A203010 This here is the first subdiagonal. The diagonal is A070825. The 2nd column is A027961. (End) %t A203010 f[k_] := LucasL[k]; t[n_] := Table[f[k], {k, 1, n}] %t A203010 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203010 Table[a[n], {n, 1, 16}] (* A203010 *) %Y A203010 Cf. A203009. %K A203010 nonn %O A203010 1,2 %A A203010 _Clark Kimberling_, Dec 29 2011