This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203025 #29 Jun 02 2025 14:48:40 %S A203025 1,1,1,4,1,1,1,8,9,1,1,4,1,1,1,16,1,9,1,4,1,1,1,8,25,1,27,4,1,1,1,32, %T A203025 1,1,1,36,1,1,1,8,1,1,1,4,9,1,1,16,49,25,1,4,1,27,1,8,1,1,1,4,1,1,9, %U A203025 64,1,1,1,4,1,1,1,36,1,1,25,4,1,1,1,16,81,1 %N A203025 Largest perfect power divisor of n. %C A203025 This sequence shares many elements with A057521, but is not identical: A057521(72)=72 but a(72)=36. %C A203025 Not multiplicative: a(49)=49; a(125)=125, a(49*125) = 1225 <> 49*125. %H A203025 Giovanni Resta, <a href="/A203025/b203025.txt">Table of n, a(n) for n = 1..10000</a> %F A203025 a(n) = max{ A001597(k) : A001597(k)|n }. - _R. J. Mathar_, Jun 09 2016 %e A203025 a(40)=a(2^3*5)=2^3=8. %p A203025 A203025:=proc(n) %p A203025 local a,Le,d,i,k,pe; %p A203025 pe := ifactors(n)[2]; %p A203025 Le := {seq(i[2],i=pe)} minus {1}; %p A203025 a := 1; %p A203025 for k in Le do %p A203025 d := mul(i[1]^(k*floor(i[2]/k)), i=pe) ; %p A203025 a:=max(a,d); %p A203025 end do; %p A203025 a %p A203025 end proc: %p A203025 seq(A203025(n),n=1..10000); # _Felix Huber_, Jun 01 2025 %t A203025 Table[If[SquareFreeQ[n], 1, s = FactorInteger[n]; Max[Table[Times @@ Cases[s, {p_, ep_} :> p^i /; (ep >= i)], {i, 2, Max[s[[All, 2]]]}]]], {n, 100}] (* _Olivier Gerard_, Jun 03 2016 *) %o A203025 (PARI) a(n)=my(f=factor(n),mx=1);for(e=2,if(n>1,vecmax(f[,2])), mx=max(mx,prod(i=1,#f[,1],f[i,1]^(f[i,2]\e*e))));mx \\ _Charles R Greathouse IV_, Dec 28 2011 %Y A203025 Cf. A057521, A087320, A274006. %K A203025 nonn %O A203025 1,4 %A A203025 _Antonio Roldán_, Dec 28 2011 %E A203025 Values matching definition restored by _Franklin T. Adams-Watters_, Jun 06 2016