cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203076 Convert A203075(n) to base 10.

This page as a plain text file.
%I A203076 #19 Jul 12 2023 11:08:06
%S A203076 0,1,2,3,5,6,7,10,11,13,14,15,17,18,19,21,22,23,26,27,29,30,31,39,42,
%T A203076 43,45,46,47,49,50,51,53,54,55,58,59,61,62,63,67,69,70,71,74,75,77,78,
%U A203076 79,81,82,83,85,86,87,90,91,93,94,95
%N A203076 Convert A203075(n) to base 10.
%C A203076 Any nonnegative number can be written as a sum of distinct terms of the complete sequence, A203074. Terms a(n) are decimal representations of binary vectors (in ascending powers of 2) used to select terms of A203074 that when summed give n.
%H A203076 Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">"Complete" sequence</a>. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]
%F A203076 Binary(a(n)) x A203074 = n, where x is the inner product and the binary vector is in ascending powers of 2 with infinite trailing zeros.
%t A203076 nextprime[n_Integer] := (k=n+1;While[!PrimeQ[k], k++];k);aprime[m_Integer] := (If[m==0, 1, nextprime[2^(m-1)]]);seqtable[l_] := (stable=Table[aprime[j], {j, 0, l}];stable);inttable[p_] := (itable=Reverse[IntegerDigits[p, 2]];itable);h=1;otable={0};ttable={};While[h<100, (inttable[h];seqtable[Length[itable]-1];test=itable.stable;If[!MemberQ[ttable, test], AppendTo[otable, h], Null];AppendTo[ttable, test];h++)];otable
%Y A203076 Cf. A203074, A203075.
%K A203076 nonn
%O A203076 0,3
%A A203076 _Frank M Jackson_ and _N. J. A. Sloane_, Dec 28 2011