A203087 Number of (n+2)X6 binary arrays avoiding patterns 000 and 101 in rows and columns.
1575, 6615, 26528, 112334, 470807, 1946072, 8108104, 33749405, 140139039, 582872782, 2424232694, 10076881075, 41899814371, 174230232505, 724397027179, 3011944328140, 12523598001417, 52071590286001, 216507575162589
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..0..0..1..1..1....0..1..1..0..0..1....0..1..1..0..0..1....1..1..1..1..0..0 ..0..0..1..1..1..1....1..1..1..0..0..1....1..1..1..0..0..1....0..0..1..1..1..0 ..0..1..0..0..1..1....1..1..1..1..1..1....0..1..1..1..1..0....0..0..1..1..1..1 ..1..1..0..0..1..1....1..1..1..1..1..1....0..1..1..1..1..0....1..1..0..0..1..1 ..0..0..1..1..1..0....1..1..1..1..0..0....1..1..1..1..1..1....1..1..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +4*a(n-2) +34*a(n-3) +40*a(n-4) -31*a(n-5) -224*a(n-6) -413*a(n-7) +433*a(n-8) +1505*a(n-9) +703*a(n-10) -2455*a(n-11) -5056*a(n-12) +2075*a(n-13) +4934*a(n-14) -656*a(n-15) +3696*a(n-16) +18044*a(n-17) -16513*a(n-18) -39362*a(n-19) +8986*a(n-20) +39868*a(n-21) -19137*a(n-22) +10671*a(n-23) +7513*a(n-24) -14687*a(n-25) -4882*a(n-26) -718*a(n-27) +4632*a(n-28) +3198*a(n-29) +2571*a(n-30) +1542*a(n-31) -1549*a(n-32) +249*a(n-33) -84*a(n-34) -330*a(n-35) +54*a(n-36) -216*a(n-37) for n>41
Comments