cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203089 Number of (n+2)X8 binary arrays avoiding patterns 000 and 101 in rows and columns.

Original entry on oeis.org

10057, 57699, 319956, 1946072, 11699349, 68989536, 411159715, 2448491999, 14527671131, 86335466624, 513171415313, 3048439984301, 18113248802206, 107631805106769, 639499854727113, 3799762632265266, 22577634198427404
Offset: 1

Views

Author

R. H. Hardin Dec 29 2011

Keywords

Comments

Column 6 of A203091

Examples

			Some solutions for n=2
..0..0..1..1..0..0..1..1....1..1..1..1..0..0..1..0....1..1..1..1..0..0..1..1
..1..1..0..0..1..1..1..0....1..1..1..1..0..0..1..1....0..1..1..1..0..0..1..1
..0..1..0..0..1..1..1..0....0..0..1..1..1..1..1..1....0..0..1..1..1..1..0..0
..0..0..1..1..1..1..1..1....0..0..1..1..0..0..1..0....1..0..0..1..1..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +10*a(n-2) +114*a(n-3) +194*a(n-4) -374*a(n-5) -3394*a(n-6) -9222*a(n-7) +3450*a(n-8) +63642*a(n-9) +184963*a(n-10) +133901*a(n-11) -670343*a(n-12) -2882799*a(n-13) -4475403*a(n-14) +3008747*a(n-15) +24197011*a(n-16) +91798704*a(n-17) +121068474*a(n-18) -390320614*a(n-19) -1585027827*a(n-20) -174789262*a(n-21) +5714123205*a(n-22) +6261482640*a(n-23) -7713853231*a(n-24) -16454030340*a(n-25) -8192162679*a(n-26) +1798821063*a(n-27) +25115593177*a(n-28) +67177230424*a(n-29) +35073379023*a(n-30) -39396358499*a(n-31) -204500017334*a(n-32) -287221302594*a(n-33) +121869444771*a(n-34) +651630500775*a(n-35) +404642219492*a(n-36) +228946678981*a(n-37) -1264088589328*a(n-38) -1430803465320*a(n-39) +390503342575*a(n-40) +473447922911*a(n-41) +2967943964011*a(n-42) +918369676941*a(n-43) -1966816449977*a(n-44) -927546061788*a(n-45) -4437543138631*a(n-46) +1189531776710*a(n-47) +1897734679450*a(n-48) +1634774070437*a(n-49) +4332697240293*a(n-50) -3798066275331*a(n-51) -714550711465*a(n-52) -4667088307373*a(n-53) -2144516247817*a(n-54) +2343538410003*a(n-55) +1252001226637*a(n-56) +5873078981680*a(n-57) +2212331507462*a(n-58) +2397332943541*a(n-59) +585948017993*a(n-60) -931286828763*a(n-61) -337232767617*a(n-62) -995783593576*a(n-63) -245594595326*a(n-64) -137014489737*a(n-65) -65506443688*a(n-66) +91651098269*a(n-67) -29737584906*a(n-68) -3191357778*a(n-69) -8285725970*a(n-70) -20928028142*a(n-71) +5723741150*a(n-72) +5048689705*a(n-73) +1215517273*a(n-74) +4795269673*a(n-75) -426942656*a(n-76) -796654841*a(n-77) +348187379*a(n-78) -367811289*a(n-79) +49871525*a(n-80) +110312488*a(n-81) -19031169*a(n-82) +9039685*a(n-83) +1655848*a(n-84) -4085144*a(n-85) +285268*a(n-86) +414624*a(n-87) +144*a(n-88) for n>96