This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203092 #13 Jan 20 2014 22:13:31 %S A203092 1,1,1,1,4,1,1,18,9,1,1,116,78,16,1,1,1060,810,220,25,1,1,12702,10335, %T A203092 3260,495,36,1,1,187810,158613,54740,9835,966,49,1,1,3296120,2854908, %U A203092 1046024,209510,24696,1708,64,1 %N A203092 Triangular array read by rows. T(n,k) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1 that have exactly k components. %C A203092 Row sums = A088957. %C A203092 T(n,0)= 1, the empty function. %C A203092 T(n,n)= 1, the identity function. %C A203092 T(n,n-1)= n^2 (apparently). %F A203092 E.g.f.: exp(x)*exp(y T(x)) where T(x) is the e.g.f. for A000169. %e A203092 T(2,1)= 4 because there are 4 such partial functions on {1,2}: 1->1, 2->2, 1->1 2->1, 1->2 2->2, %e A203092 1 %e A203092 1 1 %e A203092 1 4 1 %e A203092 1 18 9 1 %e A203092 1 116 78 16 1 %e A203092 1 1060 810 220 25 1 %e A203092 1 12702 10335 3260 495 36 1 %t A203092 nn = 8; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; %t A203092 f[list_] := Select[list, # > 0 &]; %t A203092 Map[f, Range[0, nn]! CoefficientList[ Series[Exp[x] Exp[y t], {x, 0, nn}], {x, y}]] // Flatten %Y A203092 Cf. A088956, A144289 %K A203092 nonn,tabl %O A203092 0,5 %A A203092 _Geoffrey Critzer_, Dec 29 2011