cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203092 Triangular array read by rows. T(n,k) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1 that have exactly k components.

This page as a plain text file.
%I A203092 #13 Jan 20 2014 22:13:31
%S A203092 1,1,1,1,4,1,1,18,9,1,1,116,78,16,1,1,1060,810,220,25,1,1,12702,10335,
%T A203092 3260,495,36,1,1,187810,158613,54740,9835,966,49,1,1,3296120,2854908,
%U A203092 1046024,209510,24696,1708,64,1
%N A203092 Triangular array read by rows.  T(n,k) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1 that have exactly k components.
%C A203092 Row sums = A088957.
%C A203092 T(n,0)= 1,  the empty function.
%C A203092 T(n,n)= 1,  the identity function.
%C A203092 T(n,n-1)= n^2  (apparently).
%F A203092 E.g.f.: exp(x)*exp(y T(x)) where T(x) is the e.g.f. for A000169.
%e A203092 T(2,1)= 4 because there are 4 such partial functions on {1,2}: 1->1, 2->2, 1->1 2->1, 1->2 2->2,
%e A203092 1
%e A203092 1     1
%e A203092 1     4     1
%e A203092 1     18    9     1
%e A203092 1     116   78    16    1
%e A203092 1     1060  810   220   25    1
%e A203092 1     12702 10335 3260  495   36    1
%t A203092 nn = 8; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
%t A203092 f[list_] := Select[list, # > 0 &];
%t A203092 Map[f, Range[0, nn]! CoefficientList[ Series[Exp[x] Exp[y t], {x, 0, nn}], {x, y}]] // Flatten
%Y A203092 Cf. A088956, A144289
%K A203092 nonn,tabl
%O A203092 0,5
%A A203092 _Geoffrey Critzer_, Dec 29 2011