cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A231839 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

4, 4, 16, 16, 50, 64, 50, 188, 422, 256, 144, 760, 4508, 3823, 1024, 422, 3309, 52411, 111621, 34350, 4096, 1268, 14666, 678660, 3477361, 2836554, 308419, 16384, 3823, 64607, 8887871, 124132900, 241961326, 71178861, 2771101, 65536, 11472, 283479
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Table starts
.......4..........4.............16.................50....................144
......16.........50............188................760...................3309
......64........422...........4508..............52411.................678660
.....256.......3823.........111621............3477361..............124132900
....1024......34350........2836554..........241961326............24188209253
....4096.....308419.......71178861........16599585680..........4666623161419
...16384....2771101.....1792092360......1140658285204........899426070636904
...65536...24892609....45099279326.....78428361897720.....173546274977761257
..262144..223618304..1134900171250...5390322528656652...33474310504831841795
.1048576.2008825312.28560684486812.370517687958114665.6456965889651937136227

Examples

			Some solutions for n=3 k=4
..3..2..2..2....2..2..3..2....2..2..0..0....3..3..1..0....0..0..0..3
..0..0..3..0....2..3..2..2....3..0..0..1....2..1..0..0....0..0..1..1
..0..0..0..1....2..2..2..3....1..2..2..2....1..1..1..2....2..2..2..2
		

Crossrefs

Column 1 is A000302
Row 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 4*a(n-1) +34*a(n-2) +86*a(n-3) +91*a(n-4) +46*a(n-5) +11*a(n-6) +a(n-7)
k=3: [order 10] for n>11
k=4: [order 29] for n>30
k=5: [order 82] for n>83
Empirical for row n:
n=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
n=2: [order 31] for n>32

A217954 T(n,k) = number of n-element 0..3 arrays with each element the minimum of k adjacent elements of a random 0..3 array of n+k-1 elements.

Original entry on oeis.org

4, 4, 16, 4, 16, 64, 4, 16, 50, 256, 4, 16, 50, 144, 1024, 4, 16, 50, 130, 422, 4096, 4, 16, 50, 130, 310, 1268, 16384, 4, 16, 50, 130, 296, 736, 3823, 65536, 4, 16, 50, 130, 296, 624, 1821, 11472, 262144, 4, 16, 50, 130, 296, 610, 1289, 4673, 34350, 1048576, 4, 16
Offset: 1

Views

Author

R. H. Hardin, suggestion that the diagonal might be a polynomial from L. Edson Jeffery in the Sequence Fans Mailing List, Oct 15 2012

Keywords

Comments

See A228461 for comments on the definition. - N. J. A. Sloane, Sep 02 2013
Table starts
........4......4......4.....4.....4.....4.....4.....4.....4.....4.....4.....4
.......16.....16.....16....16....16....16....16....16....16....16....16....16
.......64.....50.....50....50....50....50....50....50....50....50....50....50
......256....144....130...130...130...130...130...130...130...130...130...130
.....1024....422....310...296...296...296...296...296...296...296...296...296
.....4096...1268....736...624...610...610...610...610...610...610...610...610
....16384...3823...1821..1289..1177..1163..1163..1163..1163..1163..1163..1163
....65536..11472...4673..2741..2209..2097..2083..2083..2083..2083..2083..2083
...262144..34350..12107..6134..4202..3670..3558..3544..3544..3544..3544..3544
..1048576.102896..31103.14269..8366..6434..5902..5790..5776..5776..5776..5776
..4194304.308419..79039.33577.17569.11666..9734..9202..9090..9076..9076..9076
.16777216.924532.199819.78304.38251.22313.16410.14478.13946.13834.13820.13820

Examples

			Some solutions for n=4 k=4
..0....1....0....1....1....0....1....2....0....1....1....1....0....0....3....0
..0....1....1....1....3....3....2....2....2....1....2....2....1....2....3....2
..1....3....3....2....3....2....3....3....2....1....1....3....1....2....2....3
..1....1....3....3....0....0....0....1....0....0....1....3....0....1....2....0
		

Crossrefs

Column 2 is A203094(n+1). A217949 is also a column. Cf. A228461, A217883.

Formula

Empirical for column k:
k=2: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=3: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) +5*a(n-4) -4*a(n-5) +6*a(n-6) +4*a(n-7) +2*a(n-9) +a(n-10)
k=4: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-5) -4*a(n-6) +6*a(n-7) +4*a(n-8) +5*a(n-9) +a(n-10) +3*a(n-11) +2*a(n-12) +a(n-13)
k=5: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-6) -4*a(n-7) +6*a(n-8) +4*a(n-9) +5*a(n-10) +6*a(n-11) +2*a(n-12) +4*a(n-13) +3*a(n-14) +2*a(n-15) +a(n-16)
k=6: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-7) -4*a(n-8) +6*a(n-9) +4*a(n-10) +5*a(n-11) +6*a(n-12) +7*a(n-13) +3*a(n-14) +5*a(n-15) +4*a(n-16) +3*a(n-17) +2*a(n-18) +a(n-19)
k=7: a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) +6*a(n-8) -4*a(n-9) +6*a(n-10) +4*a(n-11) +5*a(n-12) +6*a(n-13) +7*a(n-14) +8*a(n-15) +4*a(n-16) +6*a(n-17) +5*a(n-18) +4*a(n-19) +3*a(n-20) +2*a(n-21) +a(n-22)
Diagonal: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (9/16)*n^3 + (241/180)*n^2 + (11/12)*n + 1

A231940 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors.

Original entry on oeis.org

4, 4, 16, 16, 84, 64, 50, 668, 318, 256, 144, 5070, 8426, 1328, 1024, 422, 42104, 206808, 152180, 6064, 4096, 1268, 326010, 4736026, 11159202, 2462572, 26918, 16384, 3823, 2511252, 94464137, 691418144, 518972238, 36885538, 116909, 65536, 11472
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2013

Keywords

Comments

Table starts
.......4.......4............16...............50................144
......16......84...........668.............5070..............42104
......64.....318..........8426...........206808............4736026
.....256....1328........152180.........11159202..........691418144
....1024....6064.......2462572........518972238........86074040354
....4096...26918......36885538......23280281589.....10417626293694
...16384..116909.....586971925....1098832065447...1320620287047433
...65536..511264....9394148948...52087504055935.167980047970274816
..262144.2248196..147360195020.2432351670277323
.1048576.9868600.2323912599668

Examples

			Some solutions for n=3 k=4
..0..0..0..1....0..0..0..3....2..0..0..2....0..2..2..1....0..0..1..0
..2..0..2..2....3..0..0..3....3..3..0..0....3..0..0..2....2..0..0..3
..2..3..0..0....1..2..3..0....1..0..0..2....2..0..0..0....0..2..3..2
		

Crossrefs

Column 1 is A000302
Column 2 is A231741
Row 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: [order 19] for n>20
k=3: [order 65] for n>66
Empirical for row n:
n=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
n=2: [order 15]

A231700 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal, vertical and antidiagonal neighbors.

Original entry on oeis.org

4, 4, 4, 16, 28, 16, 50, 272, 272, 50, 144, 1998, 5972, 1998, 144, 422, 13260, 115583, 115583, 13260, 422, 1268, 94996, 2049855, 6074096, 2049855, 94996, 1268, 3823, 691229, 37872601, 286808607, 286808607, 37872601, 691229, 3823, 11472, 4926082
Offset: 1

Views

Author

R. H. Hardin, Nov 12 2013

Keywords

Comments

Table starts
.....4.........4............16................50....................144
.....4........28...........272..............1998..................13260
....16.......272..........5972............115583................2049855
....50......1998........115583...........6074096..............286808607
...144.....13260.......2049855.........286808607............34764511754
...422.....94996......37872601.......14007173906..........4333974317355
..1268....691229.....711067486......696904625544........556835183317668
..3823...4926082...13223846355....34390368202345......71067313709831125
.11472..35082734..245394073602..1693611631652448....9020067185976407959
.34350.251198534.4563802124823.83546478885400765.1146622410485781036080

Examples

			Some solutions for n=3 k=4
..1..0..0..3....2..1..1..2....0..0..0..0....0..3..0..2....0..0..0..0
..0..0..3..0....0..0..0..3....3..0..0..3....0..0..0..0....0..0..0..3
..1..3..0..0....0..0..0..2....0..0..0..1....2..0..0..1....2..0..1..3
		

Crossrefs

Column 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
k=2: [order 22]

A231586 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors.

Original entry on oeis.org

4, 4, 4, 16, 28, 16, 50, 124, 124, 50, 144, 602, 2352, 602, 144, 422, 2776, 32650, 32650, 2776, 422, 1268, 12922, 381076, 1245468, 381076, 12922, 1268, 3823, 60720, 5618444, 38768838, 38768838, 5618444, 60720, 3823, 11472, 286047, 82479418, 1453028265
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2013

Keywords

Comments

Table starts
.....4.......4...........16...............50................144
.....4......28..........124..............602...............2776
....16.....124.........2352............32650.............381076
....50.....602........32650..........1245468...........38768838
...144....2776.......381076.........38768838.........2912579313
...422...12922......5618444.......1453028265.......260228939106
..1268...60720.....82479418......57099276134.....24813120747919
..3823..286047...1142396851....2144257250786...2275463989704521
.11472.1335296..16061107556...79701582158514.205616812796559119
.34350.6256326.231334122108.3015862229160377

Examples

			Some solutions for n=3 k=4
..3..2..1..1....2..0..0..0....1..1..1..3....0..0..1..2....0..3..0..0
..2..1..1..1....0..0..0..1....1..1..1..2....2..0..0..2....0..0..0..2
..2..1..1..2....2..0..0..2....1..1..2..2....3..3..0..0....2..0..0..3
		

Crossrefs

Column 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
k=2: [order 16]
k=3: [order 72] for n>73

A231746 T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal and vertical neighbors.

Original entry on oeis.org

4, 4, 4, 16, 84, 16, 50, 318, 318, 50, 144, 1328, 4430, 1328, 144, 422, 6064, 60806, 60806, 6064, 422, 1268, 26918, 784076, 2154900, 784076, 26918, 1268, 3823, 116909, 9945132, 71742015, 71742015, 9945132, 116909, 3823, 11472, 511264, 126926437
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2013

Keywords

Comments

Table starts
....4......4.........16............50..............144..................422
....4.....84........318..........1328.............6064................26918
...16....318.......4430.........60806...........784076..............9945132
...50...1328......60806.......2154900.........71742015...........2426463539
..144...6064.....784076......71742015.......6425495277.........598711367728
..422..26918....9945132....2426463539.....598711367728......155985773478611
.1268.116909..126926437...82701946547...56006640316980....40539474933206048
.3823.511264.1625269595.2814528154294.5220406326242670.10471241201508754882

Examples

			Some solutions for n=3 k=4
..0..2..0..0....3..1..1..2....0..2..1..0....0..0..2..2....1..1..3..1
..0..3..0..3....3..1..0..0....0..0..0..0....1..0..0..3....3..1..1..1
..0..1..0..0....3..1..0..0....0..3..3..1....3..1..0..0....0..0..0..0
		

Crossrefs

Column 1 is A203094 for n>1

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
k=2: [order 19] for n>20
k=3: [order 87] for n>88

A238287 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element greater than all horizontal neighbors or less than all vertical neighbors.

Original entry on oeis.org

4, 16, 16, 50, 204, 50, 144, 1844, 1844, 144, 422, 13948, 42084, 13948, 422, 1268, 105862, 737366, 737366, 105862, 1268, 3823, 850420, 12926271, 27913368, 12926271, 850420, 3823, 11472, 6953993, 245920800, 1058583000, 1058583000, 245920800
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2014

Keywords

Comments

Table starts
......4.........16.............50................144.................422
.....16........204...........1844..............13948..............105862
.....50.......1844..........42084.............737366............12926271
....144......13948.........737366...........27913368..........1058583000
....422.....105862.......12926271.........1058583000.........87389474502
...1268.....850420......245920800........44441926832.......8155057418133
...3823....6953993.....4810332239......1931022884277.....790756782942944
..11472...56279542....92790334588.....82508389421874...75089860262272452
..34350..451637564..1767175335274...3470891253761820.7004416705370946171
.102896.3624058880.33631393265283.145872518046542058

Examples

			Some solutions for n=3 k=4
..0..2..2..1..1....2..2..1..0..0....0..2..2..0..0....0..0..2..2..0
..0..2..2..1..0....0..0..0..0..0....0..2..2..0..0....0..0..2..2..0
..1..2..2..2..0....0..0..0..1..1....1..3..3..2..0....0..2..2..3..3
..1..2..2..2..1....2..2..0..3..3....1..3..3..3..0....2..3..3..3..3
		

Crossrefs

Column 1 is A203094(n+1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7)
k=2: [order 25]
Showing 1-7 of 7 results.