A203095 Number of n X 2 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
4, 84, 1080, 12260, 143510, 1705124, 20174774, 238288768, 2816078514, 33286887866, 393430889634, 4650009454296, 54959608405434, 649582808767618, 7677588567818968, 90743395882037312, 1072519744806185004
Offset: 1
Keywords
Examples
Some solutions for n=5: ..3..3....0..3....1..1....3..2....1..3....0..3....0..0....1..3....3..0....0..0 ..1..1....3..3....0..1....3..1....2..3....1..3....3..0....3..3....3..3....1..2 ..0..3....2..1....1..1....1..2....1..3....1..1....3..1....3..2....0..3....0..3 ..1..3....1..2....3..2....0..2....2..2....0..2....2..0....2..2....2..1....3..3 ..1..2....1..2....3..0....0..0....1..1....3..3....2..2....2..0....2..2....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A203101.
Formula
Empirical: a(n) = 10*a(n-1) -a(n-2) +236*a(n-3) +270*a(n-4) +945*a(n-5) +532*a(n-6) +576*a(n-7).
Empirical g.f.: 2*x*(2 + 22*x + 122*x^2 + 300*x^3 + 543*x^4 + 472*x^5 + 288*x^6) / (1 - 10*x + x^2 - 236*x^3 - 270*x^4 - 945*x^5 - 532*x^6 - 576*x^7). - Colin Barker, Jun 04 2018
Comments