cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203096 Number of nX3 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.

This page as a plain text file.
%I A203096 #7 Jul 22 2025 17:01:29
%S A203096 16,1080,48552,2029744,87531478,3790420430,163621176194,7062389921398,
%T A203096 304924052795176,13165093367601574,568388578666214512,
%U A203096 24539653368720439680,1059478958509288348530,45742091639005479963848
%N A203096 Number of nX3 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
%C A203096 Column 3 of A203101
%H A203096 R. H. Hardin, <a href="/A203096/b203096.txt">Table of n, a(n) for n = 1..210</a>
%F A203096 Empirical: a(n) = 50*a(n-1) -535*a(n-2) +11739*a(n-3) -81311*a(n-4) +952118*a(n-5) +111609*a(n-6) +23983533*a(n-7) -3575174*a(n-8) -48024160*a(n-9) -3036762623*a(n-10) -9698998582*a(n-11) -75254884745*a(n-12) -75786404331*a(n-13) +371496113408*a(n-14) +937086665510*a(n-15) +4071380170270*a(n-16) +3207519674660*a(n-17) -35547187154396*a(n-18) -50104627883832*a(n-19) +46707082317648*a(n-20) +99704384719248*a(n-21) +189399657391776*a(n-22) +190022854545216*a(n-23) -666178095939264*a(n-24) -983552499278784*a(n-25) +737232848225280*a(n-26) +1440464494146048*a(n-27) -239620376715264*a(n-28) -944613888076800*a(n-29) -83452415201280*a(n-30) +280410806292480*a(n-31) +62187583832064*a(n-32) -30045400989696*a(n-33) -8916100448256*a(n-34)
%e A203096 Some solutions for n=5
%e A203096 ..1..0..0....2..1..0....1..3..0....0..0..3....1..2..1....1..1..1....0..3..3
%e A203096 ..3..2..1....3..3..3....0..3..2....0..1..3....3..2..0....2..2..3....2..3..1
%e A203096 ..3..3..3....3..3..2....0..1..2....2..0..2....3..2..2....0..3..3....1..0..3
%e A203096 ..3..3..0....1..3..1....0..1..1....2..1..0....0..1..0....0..0..3....2..1..3
%e A203096 ..1..1..1....3..3..0....2..3..3....3..3..2....0..1..0....3..3..2....2..3..3
%K A203096 nonn
%O A203096 1,1
%A A203096 _R. H. Hardin_ Dec 29 2011