cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203097 Number of nX4 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.

This page as a plain text file.
%I A203097 #7 Jul 22 2025 17:01:36
%S A203097 50,12260,2029744,308642476,48260497186,7574530822364,
%T A203097 1186165852092876,185750876557274124,29093266517684009316,
%U A203097 4556642267438188534864,713660632715579444617080,111773747828249613604721774
%N A203097 Number of nX4 0..3 arrays with every nonzero element less than or equal to some horizontal or vertical neighbor.
%C A203097 Column 4 of A203101
%H A203097 R. H. Hardin, <a href="/A203097/b203097.txt">Table of n, a(n) for n = 1..210</a>
%F A203097 Empirical: a(n) = 170*a(n-1) -5371*a(n-2) +524276*a(n-3) -5758970*a(n-4) +584951619*a(n-5) +5871397968*a(n-6) +70742341749*a(n-7) +1399717049545*a(n-8) -78651649552388*a(n-9) -885157054901114*a(n-10) -8441801609906661*a(n-11) +96251769910356344*a(n-12) +6341132097048812311*a(n-13) +30597940591056081005*a(n-14) -331076016106214318637*a(n-15) -14831911971440188385453*a(n-16) -119958657780702265533617*a(n-17) +754630406516715918122955*a(n-18) +16934776485501437255090025*a(n-19) +179823272987679038001293840*a(n-20) -456872245343627168280320152*a(n-21) -30717659610601082816834373662*a(n-22) -83452925457132931754276247972*a(n-23) +2338690982829342710171408405211*a(n-24) +11139236040352625234994652336440*a(n-25) -105708523301917522370639798135282*a(n-26) -728259637687728273215976617714932*a(n-27) +2573818106293341434885788987693978*a(n-28) +30668803937635393202594893439074353*a(n-29) +10315570067146353745425451457539623*a(n-30) -857802696865732285344605440964863575*a(n-31) -3732761980443961400163636948197779818*a(n-32) +14301926422214835006174950020390082456*a(n-33) +171179747395433303790635892676418756814*a(n-34) -43728410760794753156773990995827795310*a(n-35) -4785887600160044577851658860797384289958*a(n-36) -4975116006153329193324125867256822146280*a(n-37) +95655415799557576995045187094914007865632*a(n-38) +165559068357194108304259947135606228327968*a(n-39) -1444014245454905313572117651340082055210304*a(n-40) -3155709614695537986456705480418770435137472*a(n-41) +16831078514265206519313621987425273663884544*a(n-42) +42676935211727650125188540124304276676521216*a(n-43) -152399842092459546052925075938372301298553344*a(n-44) -434119486442507689908158373812135741959431168*a(n-45) +1068287203851848508446745128854308241892333568*a(n-46) +3390728916789426395843459814345485641053683712*a(n-47) -5733552049723334871959522212709778911088033792*a(n-48) -20463932904385159655783764525392154591847546880*a(n-49) +23084174148713263341434956597967661394368135168*a(n-50) +95384654939025532773953342532621195991262429184*a(n-51) -67079752142190185225836605754737365156719755264*a(n-52) -341750523133566810854394001760168874626204565504*a(n-53) +128488545902172312200851173916995065029135958016*a(n-54) +933361335220959827009381501301392156693750611968*a(n-55) -111645952791081891894387741598087718319402516480*a(n-56) -1918261191664429631109935391140008968037205016576*a(n-57) -161450402522367201927485605986961655984289742848*a(n-58) +2910726662762645166324017911979940391124541112320*a(n-59) +723165909329666126069819973559546887884834340864*a(n-60) -3171882970623200867855347713392249556376693506048*a(n-61) -1214073916685043702156357629856191012399392751616*a(n-62) +2386039408338991571417700575355326273628577726464*a(n-63) +1180146862121525068288483648703883166931214139392*a(n-64) -1168038681302919164275931509216088240250811318272*a(n-65) -690163216232981431818820864374684956992022249472*a(n-66) +334645662749592704855344790263170945431466147840*a(n-67) +227151098301110780980585390679051500067361914880*a(n-68) -42570640611604616233603539078994723822632960000*a(n-69) -32694251989712345267407518012667947895782113280*a(n-70)
%e A203097 Some solutions for n=5
%e A203097 ..3..2..0..2....1..2..0..1....0..0..0..2....0..2..0..2....2..2..0..1
%e A203097 ..3..0..0..2....3..2..3..2....0..1..1..2....0..2..3..2....2..3..2..1
%e A203097 ..2..2..2..3....3..2..3..2....0..3..1..0....2..1..3..1....1..3..1..1
%e A203097 ..3..2..2..3....3..1..1..3....0..3..0..2....2..3..2..2....1..0..2..1
%e A203097 ..3..2..1..1....3..0..1..3....0..0..3..3....3..3..0..1....3..3..2..2
%K A203097 nonn
%O A203097 1,1
%A A203097 _R. H. Hardin_ Dec 29 2011