This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203152 #19 Nov 28 2017 03:27:13 %S A203152 1,3,8,28,96,420,1824,9696,51360,322560,2021760,14670720,106323840, %T A203152 875992320,7211151360,66526064640,613365903360,6265340928000, %U A203152 63970228224000,716840699904000,8030097782784000,97954524315648000 %N A203152 (n-1)-st elementary symmetric function of {1, 2, 2, 3, 3, 4, 4, 5, 5, ..., floor(1+n/2)}. %H A203152 Clark Kimberling, <a href="/A203152/b203152.txt">Table of n, a(n) for n = 1..1000</a> %e A203152 Let esf abbreviate "elementary symmetric function". Then %e A203152 0th esf of {1}: 1; %e A203152 1st esf of {1,2}: 1+2 = 3; %e A203152 2nd esf of {1,2,2} is 1*2 + 1*2 + 2*2 = 8. %p A203152 SymmPolyn := proc(L::list,n::integer) %p A203152 local c,a,sel; %p A203152 a :=0 ; %p A203152 sel := combinat[choose](nops(L),n) ; %p A203152 for c in sel do %p A203152 a := a+mul(L[e],e=c) ; %p A203152 end do: %p A203152 a; %p A203152 end proc: %p A203152 A203152 := proc(n) %p A203152 local k ; %p A203152 L := [seq(floor(1+k/2),k=1..n)] ; %p A203152 SymmPolyn(L,n-1) ; %p A203152 end proc: # _R. J. Mathar_, Sep 23 2016 %t A203152 f[k_] := Floor[(k + 2)/2]; t[n_] := Table[f[k], {k, 1, n}] %t A203152 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203152 Table[a[n], {n, 1, 22}] (* A203152 *) %Y A203152 Cf. A203153. %K A203152 nonn %O A203152 1,2 %A A203152 _Clark Kimberling_, Dec 29 2011