This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203153 #18 Nov 28 2017 03:27:21 %S A203153 1,4,16,60,276,1248,6816,36960,236160,1503360,11041920,80922240, %T A203153 672779520,5585448960,51894743040,481684008960,4948521984000, %U A203153 50802038784000,571990616064000,6436746860544000,78834313248768000,965131970052096000 %N A203153 (n-1)-st elementary symmetric function of {2, 2, 3, 3, 4, 4, 5, 5, ..., floor((n+3)/2)}. %H A203153 Clark Kimberling, <a href="/A203153/b203153.txt">Table of n, a(n) for n = 1..999</a> %e A203153 Let esf abbreviate "elementary symmetric function". Then %e A203153 0th esf of {2}: 1; %e A203153 1st esf of {2,2}: 2+2 = 4; %e A203153 2nd esf of {2,2,3} is 2*2 + 2*3 + 2*3 = 16. %p A203153 SymmPolyn := proc(L::list,n::integer) %p A203153 local c,a,sel; %p A203153 a :=0 ; %p A203153 sel := combinat[choose](nops(L),n) ; %p A203153 for c in sel do %p A203153 a := a+mul(L[e],e=c) ; %p A203153 end do: %p A203153 a; %p A203153 end proc: %p A203153 A203153 := proc(n) %p A203153 [seq(floor((k+3)/2),k=1..n)] ; %p A203153 SymmPolyn(%,n-1) ; %p A203153 end proc: # _R. J. Mathar_, Sep 23 2016 %t A203153 f[k_] := Floor[(k + 3)/2]; t[n_] := Table[f[k], {k, 1, n}] %t A203153 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203153 Table[a[n], {n, 1, 22}] (* A203153 *) %Y A203153 Cf. A203152, A203154. %K A203153 nonn %O A203153 1,2 %A A203153 _Clark Kimberling_, Dec 29 2011