This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203154 #18 Nov 27 2017 16:50:04 %S A203154 1,5,21,102,480,2688,14880,96480,622080,4613760,34110720,285586560, %T A203154 2386298880,22289541120,207921530880,2145056256000,22108972032000, %U A203154 249782787072000,2820035699712000,34637103857664000,425205351825408000 %N A203154 (n-1)-st elementary symmetric function of {2, 3, 3, 4, 4, 5, 5,...,Floor[(n+4)/2]}. %H A203154 Robert Israel, <a href="/A203154/b203154.txt">Table of n, a(n) for n = 1..502</a> %e A203154 Let esf abbreviate "elementary symmetric function". Then %e A203154 0th esf of {2}: 1 %e A203154 1st esf of {2,3}: 2+3=5; %e A203154 2nd esf of {2,3,3} is 2*3+2*3+3*3=21. %p A203154 SymmPolyn := proc(L::list,n::integer) %p A203154 local c,a,sel; %p A203154 a :=0 ; %p A203154 sel := combinat[choose](nops(L),n) ; %p A203154 for c in sel do %p A203154 a := a+mul(L[e],e=c) ; %p A203154 end do: %p A203154 a; %p A203154 end proc: %p A203154 A203154 := proc(n) %p A203154 [seq(floor((k+4)/2),k=1..n)] ; %p A203154 SymmPolyn(%,n-1); %p A203154 end proc: # _R. J. Mathar_, Sep 23 2016 %p A203154 # second Maple program: %p A203154 f:= proc(n) local L,x; %p A203154 if n::odd then L:= `*`(x+2,seq((x+i)$2, i=3..2+n/2)) %p A203154 else L:= `*`(seq((x+i)*(x+i+1),i=2..1+n/2)) %p A203154 fi; %p A203154 coeff(L,x,1); %p A203154 end proc: %p A203154 map(f, [$1..50]); # _Robert Israel_, Nov 27 2017 %t A203154 f[k_] := Floor[(k + 4)/2]; t[n_] := Table[f[k], {k, 1, n}] %t A203154 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203154 Table[a[n], {n, 1, 22}] (* A203154 *) %Y A203154 Cf. A203152, A203153, A203155. %K A203154 nonn %O A203154 1,2 %A A203154 _Clark Kimberling_, Dec 29 2011