A203156 (n-1)-st elementary symmetric function of {4,9,16,25,..., (n+1)^2}.
1, 13, 244, 6676, 254736, 13000464, 857431296, 71077637376, 7239445632000, 889141110912000, 129629670893568000, 22136856913815552000, 4377599743151480832000, 992559996665635184640000, 255805371399126806691840000
Offset: 1
Keywords
Examples
Let esf abbreviate "elementary symmetric function". Then 0th esf of {4}: 1; 1st esf of {4,9}: 4 + 9 = 13; 2nd esf of {4,9,16}: 4*9 + 4*16 + 9*16 = 244.
Links
- Robert Israel, Table of n, a(n) for n = 1..251
Crossrefs
Cf. A066989.
Programs
-
Maple
f:= proc(n) local i,x; coeff(mul(x+i^2,i=2..n+1),x,1) end proc: map(f, [$1..26]); # Robert Israel, Dec 16 2024
-
Mathematica
f[k_] := (k + 1)^2; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 22}] (* A203156 *)
Formula
a(n) = gamma(2 + n)^2*(Pi^2/6 - 1 - digamma^(1)(2 + n)), where gamma(x) is the gamma function and digamma^(n)(x) is the n-th derivative of the digamma function. - Markus Bindhammer, Nov 26 2017