cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203159 (n-1)-st elementary symmetric function of {2,4,6,8,...,2n}.

This page as a plain text file.
%I A203159 #11 Nov 28 2017 11:35:51
%S A203159 1,6,44,400,4384,56448,836352,14026752,262803456,5441863680,
%T A203159 123436892160,3044235018240,81112101027840,2322150583173120,
%U A203159 71092846618214400,2317820965473484800,80177108784198451200,2932996578806543155200
%N A203159 (n-1)-st elementary symmetric function of {2,4,6,8,...,2n}.
%F A203159 Conjecture: a(n) +2*(-2*n+1)*a(n-1) +4*(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Oct 01 2016
%e A203159 (n-1)-st elementary symmetric function of {2,4,6,8,...,2n}.
%e A203159 Let esf abbreviate "elementary symmetric function".  Then
%e A203159 0th esf of {2}:  1
%e A203159 1st esf of {2,4}: 2+4=6
%e A203159 2nd esf of {2,4,6}: 2*4+2*6+4*6=44
%t A203159 f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}]
%t A203159 a[n_] := SymmetricPolynomial[n - 1, t[n]]
%t A203159 Table[a[n], {n, 1, 16}] (* A203159 *)
%Y A203159 Cf. A004041.
%K A203159 nonn
%O A203159 1,2
%A A203159 _Clark Kimberling_, Dec 29 2011