This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203161 #17 Nov 28 2017 11:35:53 %S A203161 1,4,11,39,57,132,432,540,1188,3780,4428,9504,29808,33696,71280, %T A203161 221616,244944,513216,1586304,1726272,3592512,11057472,11897280, %U A203161 24634368,75582720,80621568,166281984,508923648,539156736,1108546560,3386105856 %N A203161 (n-1)-st elementary symmetric function of the first n terms of (3,1,2,3,1,2,3,1,2,...). %C A203161 From _R. J. Mathar_, Oct 01 2016 (Start): %C A203161 The k-th elementary symmetric functions of the first n terms of 3,1,2,3,1,2.., form a triangle T(n,k), 0<=k<=n, n>=0: %C A203161 1 %C A203161 1 3 %C A203161 1 4 3 %C A203161 1 6 11 6 %C A203161 1 9 29 39 18 %C A203161 1 10 38 68 57 18 %C A203161 1 12 58 144 193 132 36 %C A203161 1 15 94 318 625 711 432 108 %C A203161 1 16 109 412 943 1336 1143 540 108 %C A203161 1 18 141 630 1767 3222 3815 2826 1188 216 %C A203161 1 21 195 1053 3657 8523 13481 14271 9666 3780 648 %C A203161 This here is the first subdiagonal. The diagonal is a stuttered version of A026532. The 2nd column is A047231 (or A144429). (End) %H A203161 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,12,0,0,-36). %F A203161 G.f.: x*(3*x+1)*(3*x^3+8*x^2+x+1) / (6*x^3-1)^2. - _Colin Barker_, Aug 15 2014 %e A203161 Let esf abbreviate "elementary symmetric function". Then %e A203161 0th esf of {3}: 1, %e A203161 1st esf of {3,1}: 3+1=4, %e A203161 2nd esf of {3,1,2} is 3*1+3*1+1*2=11. %t A203161 f[k_] := 1 + Mod[k + 1, 3]; t[n_] := Table[f[k], {k, 1, n}] %t A203161 a[n_] := SymmetricPolynomial[n - 1, t[n]] %t A203161 Table[a[n], {n, 1, 33}] (* A203161 *) %o A203161 (PARI) Vec(x*(3*x+1)*(3*x^3+8*x^2+x+1)/(6*x^3-1)^2 + O(x^100)) \\ _Colin Barker_, Aug 15 2014 %Y A203161 Cf. A010882, A203160, A203162. %K A203161 nonn,easy %O A203161 1,2 %A A203161 _Clark Kimberling_, Dec 29 2011