A203170 Sum of the fourth powers of the first n odd-indexed Fibonacci numbers.
0, 1, 17, 642, 29203, 1365539, 64107780, 3011403301, 141469813301, 6646055880582, 312223061019703, 14667837157106759, 689076118833981960, 32371909717271872585, 1520790680382055836761, 71444790066793903279242
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (56,-440,770,-440,56,-1).
Programs
-
Mathematica
a[n_Integer] := (1/75)(Fibonacci[8n] + 12*Fibonacci[4n] + 18 n); Table[a[n], {n, 0, 20}]
Formula
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} F(2k-1)^4.
Closed form: a(n) = (1/75)(F(8n) + 12 F(4n) + 18 n).
Recurrence: a(n) - 56 a(n-1) + 440 a(n-2) - 770 a(n-3) + 440 a(n-4) - 56 a(n-5) + a(n-6) = 0.
G.f.: A(x) = (x - 39 x^2 + 130 x^3 - 39 x^4 + x^5)/(1 - 56 x + 440 x^2 - 770 x^3 + 440 x^4 - 56 x^5 + x^6) = x(1 - 39 x + 130 x^2 - 39 x^3 + x^4)/((1 - x)^2 (1 - 7 x + x^2)(1 - 47 x + x^2)).
Comments