A203231 (n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,1,3,1,3,1,3,1,...).
1, 4, 15, 24, 81, 108, 351, 432, 1377, 1620, 5103, 5832, 18225, 20412, 63423, 69984, 216513, 236196, 728271, 787320, 2421009, 2598156, 7971615, 8503056, 26040609, 27634932, 84499119, 89282088, 272629233, 286978140, 875283327, 918330048
Offset: 1
Keywords
Programs
-
Mathematica
r = {3, 1, 3, 1, 3, 1}; s = Flatten[{r, r, r, r, r, r, r, r, r}]; t[n_] := Part[s, Range[n]] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 32}] (* A203231 *)
Formula
Conjecture: a(n) = 6*a(n-2)-9*a(n-4) with G.f. x*(1+4*x+9*x^2) / (-1+3*x^2)^2 . - R. J. Mathar, Oct 15 2013