A203233 (n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,2,3,2,3,2,...).
1, 5, 21, 60, 216, 540, 1836, 4320, 14256, 32400, 104976, 233280, 746496, 1632960, 5178816, 11197440, 35271936, 75582720, 236825856, 503884800, 1572120576, 3325639680, 10339716096, 21767823360, 67480252416, 141490851840
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2559
Programs
-
Maple
f:= proc(n) if n::even then (5/12)*n*6^(n/2) else (5*n-1)*6^((n+1)/2)/24 fi end proc: map(f, [$1..100]); # Robert Israel, May 04 2017
-
Mathematica
r = {3, 2, 3, 2, 3, 2}; s = Flatten[{r, r, r, r, r, r, r, r, r}]; t[n_] := Part[s, Range[n]] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 32}] (* A203233 *)
Formula
Conjecture: a(n)=12*a(n-2)-36*a(n-4) with G.f. x*(1+5*x+9*x^2) / (-1+6*x^2)^2 . - R. J. Mathar, Oct 15 2013, verified by Robert Israel, May 04 2017
a(n) = (5/12)*n*6^(n/2) if n is even, (5*n-1)*6^((n+1)/2)/24 if n is odd. - Robert Israel, May 04 2017