cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203233 (n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,2,3,2,3,2,...).

Original entry on oeis.org

1, 5, 21, 60, 216, 540, 1836, 4320, 14256, 32400, 104976, 233280, 746496, 1632960, 5178816, 11197440, 35271936, 75582720, 236825856, 503884800, 1572120576, 3325639680, 10339716096, 21767823360, 67480252416, 141490851840
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2011

Keywords

Crossrefs

Cf. A203232, A212700 (bisection)

Programs

  • Maple
    f:= proc(n) if n::even then (5/12)*n*6^(n/2) else (5*n-1)*6^((n+1)/2)/24 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 04 2017
  • Mathematica
    r = {3, 2, 3, 2, 3, 2};
    s = Flatten[{r, r, r, r, r, r, r, r, r}];
    t[n_] := Part[s, Range[n]]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 32}]     (* A203233 *)

Formula

Conjecture: a(n)=12*a(n-2)-36*a(n-4) with G.f. x*(1+5*x+9*x^2) / (-1+6*x^2)^2 . - R. J. Mathar, Oct 15 2013, verified by Robert Israel, May 04 2017
a(n) = (5/12)*n*6^(n/2) if n is even, (5*n-1)*6^((n+1)/2)/24 if n is odd. - Robert Israel, May 04 2017