This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203241 #21 Mar 22 2018 09:49:35 %S A203241 2,14,70,310,1302,5334,21590,86870,348502,1396054,5588310,22361430, %T A203241 89462102,357881174,1431590230,5726491990,22906230102,91625444694, %U A203241 366502827350,1466013406550,5864057820502,23456239670614,93824975459670 %N A203241 Second elementary symmetric function of the first n terms of (1,2,4,8,...). %H A203241 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8). %F A203241 a(n) = 2*A006095(n). %F A203241 From _Colin Barker_, Aug 15 2014: (Start) %F A203241 a(n) = (2 - 3*2^n + 4^n)/3. %F A203241 a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). %F A203241 G.f.: -2*x^2 / ((x-1)*(2*x-1)*(4*x-1)). (End) %F A203241 a(n) = Sum_{k=0...n-2} 2^k*(2^(n-1)-1+2^k). - _J. M. Bergot_, Mar 21 2018 %t A203241 f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}] %t A203241 a[n_] := SymmetricPolynomial[2, t[n]] %t A203241 Table[a[n], {n, 2, 32}] (* A203241 *) %t A203241 Table[a[n]/2, {n, 2, 32}] (* A006095 *) %o A203241 (PARI) Vec(-2*x^2 / ((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ _Colin Barker_, Aug 15 2014 %Y A203241 Cf. A006095. %K A203241 nonn,easy %O A203241 2,1 %A A203241 _Clark Kimberling_, Dec 31 2011