A203242 Second elementary symmetric function of the first n terms of (1, 3, 7, 15, 31, ...).
3, 31, 196, 1002, 4593, 19833, 82818, 339340, 1375639, 5543331, 22263216, 89249214, 357422541, 1430607325, 5724394990, 22901773824, 91616007699, 366482904615, 1465971463740, 5863969740370, 23456055121513, 93824589584001
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..1659
Crossrefs
Cf. A203241.
Programs
-
Maple
seq(4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3,n=2..100); # Robert Israel, Feb 01 2019
-
Mathematica
f[k_] := 2^k - 1; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[2, t[n]] Table[a[n], {n, 2, 32}] (* A203242 *)
Formula
Conjecture: (-103*n+258)*a(n) + (881*n-2116)*a(n-1) + 6*(-427*n+960)*a(n-2) + 4*(766*n-1545)*a(n-3) + 16*(-80*n+121)*a(n-4) = 0. - R. J. Mathar, Oct 15 2013
Empirical g.f.: -x^2*(4*x^2 + 2*x - 3)/((x - 1)^3*(2*x - 1)^2*(4*x - 1)). - Colin Barker, Aug 15 2014
From Robert Israel, Feb 01 2019: (Start)
Conjecture and empirical g.f. verified.
a(n) = 4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3. (End)