cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203242 Second elementary symmetric function of the first n terms of (1, 3, 7, 15, 31, ...).

Original entry on oeis.org

3, 31, 196, 1002, 4593, 19833, 82818, 339340, 1375639, 5543331, 22263216, 89249214, 357422541, 1430607325, 5724394990, 22901773824, 91616007699, 366482904615, 1465971463740, 5863969740370, 23456055121513, 93824589584001
Offset: 2

Views

Author

Clark Kimberling, Dec 31 2011

Keywords

Crossrefs

Cf. A203241.

Programs

  • Maple
    seq(4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3,n=2..100); # Robert Israel, Feb 01 2019
  • Mathematica
    f[k_] := 2^k - 1; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]  (* A203242 *)

Formula

Conjecture: (-103*n+258)*a(n) + (881*n-2116)*a(n-1) + 6*(-427*n+960)*a(n-2) + 4*(766*n-1545)*a(n-3) + 16*(-80*n+121)*a(n-4) = 0. - R. J. Mathar, Oct 15 2013
Empirical g.f.: -x^2*(4*x^2 + 2*x - 3)/((x - 1)^3*(2*x - 1)^2*(4*x - 1)). - Colin Barker, Aug 15 2014
From Robert Israel, Feb 01 2019: (Start)
Conjecture and empirical g.f. verified.
a(n) = 4^(n+1)/3 - (2*n+2)*2^n + (n^2+3*n)/2 + 2/3. (End)