A203286 Number of arrays of 2n nondecreasing integers in -3..3 with sum zero and equal numbers greater than zero and less than zero.
4, 12, 28, 57, 104, 176, 280, 425, 620, 876, 1204, 1617, 2128, 2752, 3504, 4401, 5460, 6700, 8140, 9801, 11704, 13872, 16328, 19097, 22204, 25676, 29540, 33825, 38560, 43776, 49504, 55777, 62628, 70092, 78204, 87001, 96520, 106800, 117880, 129801
Offset: 1
Keywords
Examples
Some solutions for n=3: .-2...-2...-2...-2...-3...-3...-3...-3...-1...-3....0...-2...-1...-3...-2...-3 ..0...-2...-2...-1....0...-3...-1...-1...-1...-2....0...-2...-1...-1...-2...-2 ..0...-2....0...-1....0...-2....0...-1...-1...-1....0....0....0...-1...-1...-2 ..0....1....0....1....0....2....0....1....1....1....0....0....0....1....1....2 ..0....2....1....1....0....3....2....2....1....2....0....2....1....1....2....2 ..2....3....3....2....3....3....2....2....1....3....0....2....1....3....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6).
Conjectures from Colin Barker, Jun 04 2018: (Start)
G.f.: x*(4 - 4*x + 5*x^3 - 4*x^4 + x^5) / ((1 - x)^5*(1 + x)).
a(n) = (48 + 80*n + 52*n^2 + 16*n^3 + 2*n^4)/48 for n even.
a(n) = (42 + 80*n + 52*n^2 + 16*n^3 + 2*n^4)/48 for n odd.
(End)
Comments