A203287 Number of arrays of 2n nondecreasing integers in -4..4 with sum zero and equal numbers greater than zero and less than zero.
5, 21, 69, 188, 444, 944, 1844, 3369, 5825, 9621, 15285, 23492, 35080, 51084, 72756, 101601, 139401, 188257, 250613, 329304, 427584, 549176, 698304, 879749, 1098881, 1361721, 1674977, 2046108, 2483364, 2995856, 3593596, 4287573, 5089797, 6013377
Offset: 1
Keywords
Examples
Some solutions for n=3: .-3...-1...-3...-3...-3...-3...-3...-4...-3...-4...-4...-3...-2...-4...-4...-4 .-3...-1...-2...-3...-2...-3...-3...-1...-2....0...-2...-1....0...-2...-2...-4 .-1...-1....0...-2...-1...-1...-1...-1....0....0...-1...-1....0...-2...-1...-1 ..1....1....0....1....1....1....2....1....0....0....1....1....0....2....2....3 ..3....1....2....3....1....2....2....2....1....0....2....2....0....3....2....3 ..3....1....3....4....4....4....3....3....4....4....4....2....2....3....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..189
Crossrefs
Cf. A203291.
Formula
Empirical: a(n) = 4*a(n-1) -4*a(n-2) -3*a(n-3) +6*a(n-4) -6*a(n-7) +3*a(n-8) +4*a(n-9) -4*a(n-10) +a(n-11).
Empirical g.f.: x*(5 + x + 5*x^2 + 11*x^3 + x^4 + x^5 - 6*x^6 + 3*x^7 + 4*x^8 - 4*x^9 + x^10) / ((1 - x)^7*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jun 04 2018
Comments