A203292 Number of arrays of 4 nondecreasing integers in -n..n with sum zero and equal numbers greater than zero and less than zero.
3, 6, 12, 21, 35, 54, 80, 113, 155, 206, 268, 341, 427, 526, 640, 769, 915, 1078, 1260, 1461, 1683, 1926, 2192, 2481, 2795, 3134, 3500, 3893, 4315, 4766, 5248, 5761, 6307, 6886, 7500, 8149, 8835, 9558, 10320, 11121, 11963, 12846, 13772, 14741, 15755
Offset: 1
Keywords
Examples
All solutions for n=3: .-2...-3....0...-2...-2...-1...-3...-3...-3...-3...-1...-2 ..0....0....0...-1...-2....0...-1...-2...-1...-3...-1...-2 ..0....0....0....1....2....0....2....2....1....3....1....1 ..2....3....0....2....2....1....2....3....3....3....1....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A203291.
Formula
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Conjectures from Colin Barker, Jun 04 2018: (Start)
G.f.: x*(3 - 3*x + 3*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (24 + 32*n + 6*n^2 + 4*n^3)/24 for n even.
a(n) = (30 + 32*n + 6*n^2 + 4*n^3)/24 for n odd.
(End)
Comments