A203293 Number of arrays of 6 nondecreasing integers in -n..n with sum zero and equal numbers greater than zero and less than zero.
4, 10, 28, 69, 154, 310, 580, 1013, 1680, 2662, 4064, 6005, 8634, 12114, 16644, 22441, 29760, 38878, 50116, 63817, 80374, 100206, 123784, 151609, 184240, 222266, 266340, 317149, 375446, 442022, 517740, 603501, 700284, 809110, 931080, 1067341, 1219126
Offset: 1
Keywords
Examples
Some solutions for n=3: .-2...-2...-2...-3...-3...-1...-3...-3....0...-2...-1...-3...-2...-3...-3...-3 ..0...-2...-2...-2...-1...-1....0...-3....0...-2...-1...-2...-2...-2...-1...-1 ..0....0...-1....0....0...-1....0...-1....0....0....0...-2...-2...-1....0...-1 ..0....0....1....0....0....1....0....2....0....0....0....2....2....2....0....1 ..0....1....2....2....2....1....0....2....0....2....1....2....2....2....1....1 ..2....3....2....3....2....1....3....3....0....2....1....3....2....2....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A203291.
Formula
Empirical: a(n) = 3*a(n-1) -a(n-2) -4*a(n-3) +2*a(n-4) +2*a(n-5) +2*a(n-6) -4*a(n-7) -a(n-8) +3*a(n-9) -a(n-10).
Empirical g.f.: x*(4 - 2*x + 2*x^2 + 11*x^3 + 7*x^4 + x^5 - 4*x^6 + x^7 + 3*x^8 - x^9) / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jun 04 2018
Comments