cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203296 Number of arrays of 12 nondecreasing integers in -n..n with sum zero and equal numbers greater than zero and less than zero.

Original entry on oeis.org

7, 28, 176, 944, 4206, 15798, 51768, 151393, 403131, 991692, 2280620, 4948566, 10208256, 20143302, 38215998, 70007951, 124283183, 214475760, 360744276, 592751998, 953388836, 1503671490, 2329136950, 3548069499, 5322005825
Offset: 1

Views

Author

R. H. Hardin Dec 31 2011

Keywords

Comments

Row 6 of A203291

Examples

			Some solutions for n=3
.-3...-3...-2...-3...-3...-3...-3...-3...-2...-3...-3...-3...-3...-3...-2...-3
.-1...-3...-2...-3...-3...-3...-3...-3...-1...-1...-3...-3...-3...-3...-2...-3
.-1...-3...-2...-3...-1...-3...-3...-1...-1...-1....0...-2...-3...-3...-1...-2
.-1...-1...-2...-1...-1...-1...-1...-1...-1...-1....0...-2...-3...-1...-1...-1
..0...-1...-2...-1...-1...-1...-1....0...-1...-1....0...-1...-1....0...-1...-1
..0...-1...-1....0....0....0....0....0....0...-1....0...-1...-1....0...-1....0
..0....2....1....0....0....0....0....0....0....1....0....1....1....0....1....0
..0....2....2....1....1....1....2....0....1....1....0....2....1....0....1....2
..1....2....2....1....2....2....2....2....1....1....0....2....3....2....1....2
..1....2....2....3....2....2....2....2....1....1....0....2....3....2....1....2
..2....2....2....3....2....3....2....2....1....2....3....2....3....3....1....2
..2....2....2....3....2....3....3....2....2....2....3....3....3....3....3....2
		

Formula

Empirical: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) -a(n-5) +3*a(n-6) -a(n-7) +5*a(n-8) -a(n-9) -6*a(n-10) -2*a(n-11) -a(n-12) +a(n-13) +a(n-14) +13*a(n-15) -4*a(n-16) -2*a(n-17) -4*a(n-18) -4*a(n-19) -2*a(n-20) -4*a(n-21) +13*a(n-22) +a(n-23) +a(n-24) -a(n-25) -2*a(n-26) -6*a(n-27) -a(n-28) +5*a(n-29) -a(n-30) +3*a(n-31) -a(n-32) +a(n-33) -3*a(n-34) -a(n-35) +3*a(n-36) -a(n-37)